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We propose a mean-field theory for the localization of damage in a quasistatic fuse model on a cylinder.
Depending on the quenched disorder distribution of the fuse thresholds, we show analytically that the system
can either stay in a percolation regime up to breakdown, or start at some imposed current, to localize starting
from the smallest scale �lattice spacing�, or instead go to a diffuse localization regime where damage starts to
concentrate in bands of width scaling as the width of the system, but remains diffuse at smaller scales.
Depending on the nature of the quenched disorder on the fuse thresholds, we derive analytically the phase
diagram of the system separating these regimes and the current levels for the onset of these possible localiza-
tions. We compare these predictions to numerical results.
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I. INTRODUCTION

To understand breakdown processes in brittle systems
with elastic interactions between the elements, and disorder
in the material properties, fuse networks are often studied
�1,2�. Such simplified models correspond to a scalar approxi-
mation of elasticity, i.e., retain the presence of long-range
interactions, and such lattice models can be conveniently
studied numerically, with the possibility to control a priori
the probability distribution function �p.d.f.� characterizing
the disorder in the rupture thresholds �1�. Fuse models allow
us to study the impact on breakdown processes, of param-
eters as the disorder in material properties, and of size effects
�the ratio of system size over lattice spacing, or over grain
size for a natural system�. We will present here a detailed
study of the fuse model implemented on a network forming a
long cylinder, and show how three different breakdown re-
gimes are accessible to it depending on the nature of the
quenched disorder �q.d.� in the rupture thresholds, and on the
system size.

Related studies have already been performed on fuse
models implemented on square lattices �3�. The present work
extends these studies to the case of rectangular systems, with
an extent Ly importantly exceeding the dimension L in the
direction perpendicular to the main current flow. This exten-
sion will allow us to show how three types of breakdown
processes can emerge in it, which will be termed as an en-
tirely localized regime, a diffuse localization regime, and a
percolationlike one. We will develop an analytical mean-field
theory, allowing us to classify which regime dominates the
final breakdown, as a function of the system size, and of the
characteristics of the quenched disorder. The three possible
regimes are illustrated in Fig. 1. The total localization regime
corresponds to the breakdown propagating between close or

nearest neighbors. The percolationlike regime corresponds to
systems where a significant fraction of the entire set of fuses
have blown before the system becomes nonconducting. The
diffuse localization regime corresponds to a system where
the burned-out fuses concentrate in a band of size compa-
rable with the system width, but where the damage is distrib-
uted diffusely inside this band, without necessarily propagat-
ing to the close neighbors of the already burned fuses.

An important motivation of this study is to characterize
the scaling law between the system size, and the character-
istic size where damage localizes in the so-called “diffuse
localization” regime. This scaling law has an important the-
oretical impact on the understanding of the origin of the
geometrical characteristics of natural fracture surfaces. In-
deed, in general the main contribution �so far� to the science
of fracture by the physics community over the last 20 years
is the discovery that brittle fracture surfaces are self-affine
�4�. Self-affinity implies statistical invariance of fracture sur-
faces under the rescaling of length scales parallel to the av-
erage fracture plane by a factor � and rescaling of the out-
of-plane length scale by a factor ��, where � is the Hurst or
roughness exponent. In 1990, based on experimental inves-
tigations of brittle aluminum fracture surfaces, Bouchaud et
al. �5� proposed that the roughness exponent has a universal
value close to 0.8. This value has been reported in many later
investigations, see, e.g., �6–9�. In Refs. �8,9�, a small-scale
regime governed by a different roughness exponent was re-
ported in addition to the “usual” regime characterized by a
roughness exponent of 0.8, see �10� for a review. There have
been several attempts at finding a theoretical explanation for
the universal roughness exponents, see �11–14�.

Using the fuse model as paradigm for brittle fracture
�1,2�, Hansen and Schmittbuhl �14� have recently proposed
that the roughness exponent � is related to the exponent �
controlling the divergence of the autocorrelation length of
the emerging damage, �, as function of the control param-
eter: more explicitly, in the case of a burned fuse model,
noting V the imposed global voltage difference, and Vc the
voltage at complete electrical failure, ���V−Vc�−�. Hansen
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and Schmittbuhl �14� proposed the existence of a scaling
relationship between these two exponents, �=2� / �1+2�� in
such breakdown problems. This relationship was numerically
checked for a fuse model in two dimensions, where the ex-
ponent � was numerically measured, and found to be close to
that of percolation, �= 4

3 �15�, leading to the roughness ex-
ponent ��8/11. However, large-scale simulations by
Nukala et al. �16� gave �=1.56 and high-precision measure-
ments of the roughness exponent gives �=0.74±0.03 �17�.
Using the value 1.56 in the relation �=2� / �1+2�� gives
0.76. In three dimensions, one finds �=0.83±0.04 �18�, and
�=0.62±0.05 �19�. The same reasoning for brittle fracture,
based on the same scaling relationship, and an auto correla-
tion divergence exponent �=2 �20�, leads to the roughness
exponent �= 4

5 for brittle fracture, in excellent agreement
with the experimental measurements �5�. Central to this
theory is the scaling law w�L /� between the width of a
concentrated damage zone w and the size of the system L,
where � is the lattice constant. One of the aims of this paper
is to explain the origin of this scaling law.

The fuse model consists of a lattice of Ohmic resistors
with identical conductances placed between two bus bars,
where each bond carries an electrical current up to a thresh-
old t above which the bond burns irreversibly. Each of these
local random thresholds t are fixed initially and taken inde-
pendently of each other from the p.d.f. p�t�, which entirely
characterizes the uncorrelated quenched disorder present in
this system.

For square systems, the phase diagram of this system was
established numerically and through order statistics argu-
ments �3� depending of two parameters � and � characteriz-
ing the quenched disorder distribution tails in the limit of
zero or infinite thresholds, as p�t�� t�−1 where t→0 and

p�t�� t−�−1 when t→�. We will consider here such systems
in a cylindrical geometry, i.e. a periodic band of finite width
L	�, where � is the lattice constant placed between two bus
bar at distances Ly 	L, and derive analytically the equivalent
of this phase diagram as function of � and L /�, at
Ly /�	1–we will only consider here power-law distributions
with an upper cutoff, corresponding to �→� in the previous
terminology. With respect to this previous work, we extend
the study in two ways: we consider elongated systems, and in
detail the anisotropic aspect of the current perturbation gen-
erated by burned fuses.

The derivation of the phase diagram of such a paradig-
matic model is important in several respects. It allows first to
clarify the role of disorder and system geometry on this par-
ticular simple breaking model. Moreover, there have been
recent studies focusing on isomorphisms between classical
statistical mechanics models, and breakdown models such as
burned fuse models �21� or quasistatic fracture models
�22,23�. The determination of the phase diagram of such
simple breakdown models, as function of the quenched dis-
order and system geometry, should help in the future to theo-
retically scrutinize these isomorphisms, by comparison of the
phase diagrams of the known systems.

In the next section, we present the basic assumptions for
and philosophy of our statistical analysis of the fuse model.
In Section III we calculate the shape of the current distribu-
tion around a region of burned-out fuses. We then present in
Section IV the spatial probability distribution of subsequent
fuse burn-outs. The main result of the calculation is pre-
sented in Fig. 4. Depending on the disorder exponent �, and
on the system size, there are three possible breakdown re-
gimes: �1� A percolationlike phase where no localization oc-
curs and where a finite fraction of the total number of fuses
needs to burn out in order for the conductance of the lattice

FIG. 1. Configuration of burned fuses in an elongated network at system breakdown, for five realizations with a decreasing quenched
disorder from �a�–�e�: the distribution of the fuse thresholds t is of the type p�t�� t�−1 for 0
 t
1, with � indicate. In the white region is
a nondisplayed diamond lattice of intact fuses, inclined at 45° with respect to the bus bars at the top and bottom, with a lattice step �=1.
Burned fuses are marked by gray squares, with a gray index turning from dark to light in chronological order. In cases �d� and �e�, order
dominates and the rupture proceeds almost always via nearest neighbors: this is an ordered rupture, with a total localization of damage. In
case �a�, disorder is large and the breakdown process is dominated by the distributed location of weakest flaws: this is a percolationlike
filling, with a finite fraction of bonds to break to reach the system breakdown. In cases �b� and �c�, rupture does not proceed via nearest
neighbors, and looks diffuse at scales below L=30�, the lateral x size of the system. Broken bonds are nonetheless localized in a band of
vertical size w comparable to the horizontal width L of the system: this is the diffuse localization regime.
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to drop to zero in the infinite-lattice limit; �2� a diffuse lo-
calization phase where a damage zone develops, with a
width w proportional to the width of the lattice L; and �3� a
complete localization phase where a single crack evolves
without damage around it. These regimes are illustrated in
Fig. 1. We do not in this paper discuss the phase diagram
with respect to the second disorder exponent �. In Sec. V, we
compare our analysis to numerical results on the fuse model.
We summarize our findings in Sec. VI.

II. MODEL UNDER STUDY AND BASIC ASSUMPTIONS

At any stage of the rupture process, we will assume that
the local currents in the fuse model are determined through a
continuous approximation, as the solution of the conserva-
tion of charge � · j=0 under boundary conditions j→ jeŷ
when y→ ±Ly /2 �the band is L-periodic in the x direction,
�x̂ , ŷ� are the unit vectors�. The current density is of the form
j�r�=−c�r����r�, with a conductance c�r� equal to unity in
the intact cells, and zero in the broken ones.

After the first fuse has burnt at a certain current level je at
a position defined as the origin, we are interested in the av-
erage change of external current necessary to break the next
element: since the problem is linear, for a given geometry of
burnt elements, the current flow for any other value of the
external current j� is simply �j� / je�j�r�. For a given realiza-
tion of the quenched disorder t�r� �such as t�r�� je at every
location�, the next fuse will burn when a first threshold is
reached by the local current, i.e., when the external current
reaches

jn = je minr� t�r�
j�r�

	 , �1�

at a position rn corresponding to the realization of this mini-
mum. If jn� je, the applied external current has to be in-
creased by a finite value for the next fuse to burn. On the
contrary, if jn je, there is an avalanche and the next fuse
burns immediately if the external current is not reduced im-
mediately during the first burn-out to this lower value jn.

We are also interested in the geometric characteristics of
the relative position of the next burnt fuse with respect to the
first one: over all realizations of the quenched disorder, we
define the probability distribution over this relative position
of the next burnt fuse as ��rn�. Three scenarii will be shown
to happen, depending on the random mean square distance of
the next burnt fuse to the previous one, d2=
rn

2��rn�drn: �1�
d� +� and the process remains diffuse, resembling a perco-
lation process. �2� d��, i.e., it is a function of the lattice
spacing, independent of the system width L. This is the onset
of a complete localization, i.e., the current perturbation cre-
ated by the broken cell is such that the rupture will propagate
mainly from nearest neighbor to nearest neighbor up to com-
plete breakdown of the system. �3� d�L, which is the onset
of a regime which we define as “diffuse localization:” dam-
age starts to concentrate in a band of a width in the y direc-
tion comparable to the system size in the x direction, L, but
the closest neighbors of the previously burnt cell are not
significantly favorized. This is the regime where the scaling
arguments of �14� should apply.

If the system remains in the diffuse regime, the spatial
correlations of the damage are not significant, and we are
entitled to consider a mean-field approximation to study the
subsequent history of the process: if the last fuse has burnt at
a location r0 at a current level je, the probability distribution
over the location of the next fuse burning is approximated as
the probability obtained from a situation where a single fuse
has burnt at r0, under the condition that all of the remaining
thresholds were above je.

To estimate the average level of current necessary to trig-
ger the next fuse burning and the statistical properties of its
location, we extend the arguments of Roux and Hansen �24�:
By convention, any level of local current j in the system will
be expressed through a reduced dimensionless variable s
= �j− je� / je, the ratio of the current perturbation generated by
the last fuse burnt, over the average imposed current level.
We next define n�s��s as the number of cells experiencing a
local current between je�1+s� and je�1+s+�s�, where �s
�1 is a small parameter. Defining as ��s ,�s� the region
experiencing that local current level, we have

n�s� = lim
�s→0

1

�2 · �s
�

�x,y����s,�s�
dx dy . �2�

The average value m of the external current leading to the
next burn-out is, from Eq. �1�, the average value of the mini-
mum over all cells of the random variable y= t / �1+s�—Eq.
�1�,

m = �mins=n�s,r���s,�s�/n�Z�
t�r�

1 + s
� . �3�

At a given level of current perturbation s, we define P�y ,s�
as the cumulative probability of the random variable y
= t / �1+s�, given that t� je. This last condition reflects the
fact that the intact fuses experiencing a current je�1+s� have
survived, up to the burning point of the fuse creating the
dipolar perturbation we look at. This is straightforwardly

P�y,s� =
P�y�1 + s�� − P�je�

1 − P�je�
He�y�1 + s� − je� , �4�

where He is the Heaviside function, and P is the cumulative
distribution of thresholds.

As shown in Appendix, A, where we extended some sta-
tistical results of Gumbel �25�, m satisfies the implicit equa-
tion

�
s

n�s�P�m,s�ds = 1. �5�

We also show in this Appendix that ��rn��P(m ,s�rn�), where
m is the solution of the above equation, i.e., that
n�s�P�m ,s��s is the probability that the next bond would
break in ��s ,�s�. Thus, if we find �smax ,�s� such as the
integral in the above has a significant support only in
�smax ,smax+�s�—i.e., 
smax

smax+�sn�s�P�m ,s�ds=1, the next
break will almost certainly happen in the spatial region
��smax ,�s�, and the geometric properties of this spatial en-
semble are representative of the ones of the spatial distribu-

MEAN-FIELD THEORY OF LOCALIZATION IN A FUSE MODEL PHYSICAL REVIEW E 73, 046103 �2006�

046103-3



tion over all possible locations of the next broken bond, i.e.,
the random mean square distance to the next broken bond
will be evaluated as

d2 = �
�x,y����smax,�s�

�x2 + y2�dx dy . �6�

III. NUMBER DENSITY OF CELLS OVER THE LEVEL OF
CURRENT PERTURBATION

We will now compute the mass n�s��s and shape
��s ,�s� of each region carrying a certain value of the local
current magnitude in �je�1+s� , je�1+s+�s��. The local cur-
rent, after a unit has fused somewhere, is written as j�r�
= jeŷ+�j�r�, with a perturbation �j�r�=−�� and a potential
field satisfying Laplace equation �2�=0 under Neumann
boundary conditions, ��=0 when y→ ±Ly and n̂��= jen̂ŷ
along the surface of the broken element �elementary lattice
cell�, where n̂ is the elementary vector normal to it. Since
L�Ly, this current perturbation will be approximated as the
one in an infinitely long cylinder, i.e., the long-range condi-
tion used will be ��=0 when y→ ±�, and x periodicity
with a period L. We will then also use the coordinate system
where the last burnt fuse is at the origin. Furthermore, from
a distance of a few lattice size and above, the shape of the
lattice cell is no more relevant, and this elementary current
perturbation is itself approximated as the solution of this
problem with a spherical fused element of diameter �: �
satisfies in circular coordinates, n̂���r=� /2 ,��= je sin���.
For sufficiently large systems L /�	1, this particular poten-
tial can itself be constructed as

� = − je��2ŷ � G/2, �7�

where G is the solution of the Poisson equation in L-periodic
boundary conditions in the x direction, satisfying �G
=��x ,y� and G�x+L ,y�=G�x ,y�: indeed, along the surface
of the elementary circle of diameter �, we have �G
� r̂ /2�r, and with r̂ the elementary radial vector, and � the
angle between x̂ and r̂,

r̂ · ��ŷ � G� = r̂ � �sin���/2�r� = − 2 sin���/��2.

The complete expression of G in such periodic boundary
conditions is after Morse and Feshbach �26�,

G�x,y� =
1

4�
ln�4 sin2��x

L
	 + 4 sinh2��y

L
	� . �8�

Eventually, at a sufficient distance from a broken cell r	�,
we have �j� je and j�r����jeŷ+�j�r��� je+�j�r�, where
�j�r�= ŷ�j�r�—which is a classical expression for the dipolar
perturbation emanating from a burned fuse in such models,
see, e.g., �27�. The magnitude of the current perturbation is
thus determined from the above Eqs. �7� and �8� as

�j�x,y�/je =
�2�2

2L2 f�2�x/L,2�y/L� , �9�

with

f�u,v� =
1 − cos�u�cosh�v�

�cosh�v� − cos�u��2 . �10�

A contour map of the dimensionless current perturbation
f�u ,v� is displayed in Fig. 2.

Since this perturbation f�u ,v� is a pair in both its argu-
ments, only a zone �0,��2 was represented. The system is 2�
periodic in the x direction. Two special contours were high-
lightened: f�u ,v�=0 is the long-dashed curve. On the dis-
played region, points to the right of this line experience an
increased current due to the burnt fuse at the origin, and
conversely the current is screened for those to the left of it.
This zero perturbation contour correspond to v0�u�
=a cosh�1/cos�u��, which has a support on u mod �2��
� �−� /2 ,� /2� and an asymptot v0�u�→ +� when u
→ ±� /2. The other contour goes through a saddle point of f
in �u ,v�= �0,��, and corresponds to f�u ,v�=0.5, or v0.5�u�
=a cosh��2−cos2 u�.

The regions ��s ,�s� that we want to characterize geo-
metrically, which support a perturbation of current such as
s
�j / je
s+�s, correspond to the regions between two
neighboring lines of the contour map in Fig. 2. The number
of the cells in such regions, defined in Eq. �2�, is shown in
Appendix B to be of the form

n�s� =
2L4

�2�4g�2L2s/�2�2� , �11�

where the dimensionless quantity g, function of its dimen-
sionless argument, is numerically evaluated and plotted as a
continuous line in Fig. 3. The numerical evaluation is based
on analytical expressions detailed in Appendix B, where the
asymptotic behaviors of this function g are also derived,
which are plotted in Fig. 3.

FIG. 2. Contour map of the elementary current perturbation due
to a burnt fuse at the origin. The long-dashed curve corresponds to
a 0 perturbation, the short-dashed one meets a saddle point at �� ,0�,
and corresponds to f�u ,v�=0.5.

R. TOUSSAINT AND A. HANSEN PHYSICAL REVIEW E 73, 046103 �2006�

046103-4



IV. REGION OF MOST PROBABLE NEXT EVENT

We have now derived the number of cells associated with
each current level, n�s�, characterizing the interactions in this
system, and need to consider some specific quenched disor-
der to determine the typical separation between two subse-
quent burning fuses. With a quenched disorder distribution of
power-law type P�t�= t� on 0 t1, with ��0, we obtain
the cumulative distribution for thresholds to be below m, for
the fuses that were still intact at current je, through Eq. �4�,
as

P�m,s� =
m��1 + s�� − je

�

1 − je
� He�m�1 + s� − je� . �12�

We divide the space with respect to the last burned fuse in
three zones, noted �c, �d, and � f, and have to solve the
implicit Eq. �5� to find both the most probable region out of
these three where the next break will happen, and the most
probable value of the external current m at which the next
fuse will burn. This equation becomes

��
�c

+ �
�d

+ �
�f

	n�s�P�m,s�ds = 1. �13�

By definition, �c is a region of fuses close to the last burned
one, with the largest positive current perturbation, such as
f�u ,v��L / �2�2��. All such fuses lie within a distance r

��L�� of the last burned one, where we recall that � is the
lattice step and L is the x dimension of the system.

�d is a region defined with moderate and finite current
perturbations, where L / �2�2��� f�u ,v��

1
4 . The typical dis-

tance r from the origin of the current perturbation, over the
zone �d, is such as ��L��
r
�L.

Last, � f is a region of weak to negative current perturba-
tion, defined by the implicit equation f�u ,v�


1
4 . It will be

shown that when this region dominates the left-hand side of
Eq. �13�, the leading contribution to it comes from points
sitting at a characteristic distance r to the last burned fuse,
scaling with the system size as r�Ly.

In Appendix C, we analyze in detail the three terms of Eq.
�13�, and reformulate it as

Hc��� + Hd��� + Hf��� =
2��1 − je

��
je
� , �14�

where �=m / je, with je, m the values of te external current at
the last break and at the most probable next one, �
=�2�2 / �2L2� and Hc, Hd, Hf are proportional to the integrals
in Eq. �13� over the regions �c, �d, and � f.

We will classify the regime of the system according to the
dominant term in the left-hand side of Eq. �14�: If Hf domi-
nates, the system remains in a diffuse regime where there are
no noticeable spatial correlations in the pattern of burnt fuse.
If Hc dominates, this signifies the onset of a complete local-
ization regime where the damage will develop in a concen-
trated zone scaling as the lattice size �, and propagate
through the system, tearing it with jumps between successive
events close to this smallest scale. Last, the dominance of Hd
would denote the onset of a diffuse localization regime,
where the characteristic distance d between the burnt fuse
scales as L, the system’s width.

Thus, following as the imposed current increases, which
of the three terms dominates in Eq. �14�, allows us to under-
stand when damage starts to localize, and at which spatial
scale. This allows us to classify, as function of the system
dimensions Lx /�, Ly /� and of the quenched disorder, char-
acterized by �, in which localization regime the system ends
up in.

It is shown in Appendix C that in the early stages of the
process, at small je, Hf dominates the solution of Eq. �14�,
owing to the singularity of n�s� around s�0 �zero current
perturbation line�, and this equation reduces to

�� − 1 =
1 − je

�

Ncellsje
�

. �15�

Since the first break is typically for j1
�=1/Ncells, this equa-

tion predicts a second break typically at

�1
� − 1 = 1, �16�

i.e., the second break should happen on average at j2=�1j1
= �1+1�1/�j1= �2/Ncells�1/�. Since j2� j1, the process is stable
and there is a finite gap in the external current to trigger the
next fuse burning. Since Hf is dominated by the asymptote of
zero current perturbation �noted h4 and h6 in Appendix C�,
corresponding to the long dashed curve in Fig. 2, which
spans the whole y range of the system, the next fuse is likely
to burn at a distance scaling as d�Ly from the first one, i.e.,
the system remains in a diffuse regime, with no noticeable
correlations between the locations of the burnt fuses: the size
of the system wins compared to the attractive feature of the
current concentration around the last burnt fuse, in a Flory-
type argument. We can then proceed with this mean-field
theory to treat the later stages of the process.

As long as Hf dominates Eq. �14�, Eq. �15� remains valid,
and by recurrence, we show in Appendix C that the nth fuse
burns on average when the external current is such as

jn
� = �n/Ncells�: . �17�

As long as this is the case, the nth weakest bonds are the
most likely to be the n first burnt ones.

FIG. 3. Dimensionless number density of cells as function of the
level of current perturbation, and asymptotic forms in dashed, at
infinite distance �a=0�, around the saddle point �a= 1

2
� and in the

region close to the burnt fuse �a→��.
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For threshold distributions characterized by a very large
disorder, i.e., in the limit �→0, it is shown in Appendix C
that Hf��� always dominates in the solution of Eq. �14�, up to
the moment where je

�= 1
2 . In this limit, the nth fuse burning

corresponds to the nth weakest threshold, and this lasts until
the entire system is broken due to burned fuses percolating
through the system. In this case, the process remains diffuse,
in a percolationlike regime, up to the moment where P�je�
= 1

2 , which corresponds to the critical percolation threshold.
This means that in this limit of nonrenormalizability of the
q.d. distribution, and very large disorder, the process is
equivalent to a bond-percolation process, which was shown
by Roux et al. �28�.

On the contrary, for very small disorder, in the limit �
→ +�, we show in Appendix C that Hc��� dominates, and
even that the contribution of the nearest neighboring cells on
the sides of the last burnt fuse dominate the integral: thus,
the next fuses to burn are the ones carrying the highest cur-
rent perturbation, and from the asymptotic expression of
Hc��� derived in Appendix C, and Eq. �14�, the level of next
break is set by

� =
21/�

jes���1/� , �18�

where

s��� = �
�/4�L

1/4� �1 + ���

2�2 d� . �19�

This happens in a controlled way, i.e., for ��1 if � is still
sufficiently small so that s���
2N=2/ je

�, or through imme-
diate avalanches �
1 in the opposite case. This is the limit
of no disorder, where all bonds share the same threshold, and
the concentration of current around the first broken one is the
significant parameter controlling the process in this case: the
rupture proceeds from the smallest scales, expanding through
nearest neighbors from the initial seed to tear the system
apart. This corresponds to a classical rupture process, analog
to the rupture of a perfectly elastic and homogeneous mate-
rial �no disorder�, where the stress concentration at the tips of
an initial default leads to the rupture of the system when the
load is increased—in a stable way or not, depending on the
load level—the situation known from one century in linear
elastic fracture mechanics, treated by Griffith and Inglis �29�.

Between these two extreme cases, in the range of finite �,
the system can be driven to a third regime if Hd dominates in
the solution of Eq. �14�: correlations in the damage start to
be significant, but the characteristic distance to the preceding
burnt fuses is in a range between �L� and L, and does not
scale as the lattice constant �: this is the regime which we
refer to as “diffuse localization.”

We determine a lower value �m of the exponent of the q.d.
distribution separating systems entirely equivalent to perco-
lation up to breakdown, and these leading to diffuse localiza-
tion, as follows: as long as the percolation regime holds, the
value of the external current, and the size of the jumps � in
it, are determined by Eq. �17�. This regime goes on as long
as Hd��� can indeed be neglected in front of Hf���. If both
terms become equal, the system transits towards the diffuse

localization regime, which is shown in Appendix C to corre-
spond to leading order in 1/Ncells, to the condition

�

2
ln�L

�
	 = 2

1 − je
�

je
� . �20�

If this condition is not met at the percolation threshold
je
�= 1

2 , i.e. if

� 
 �m =
4

ln�L/��
, �21�

the system always remains in the percolation universality
class. If on contrary ���m, the system undergoes a transi-
tion towards diffuse localization at a typical external current

jt = 1/�1 + � ln�L/��/4�1/�. �22�

Similarly, we determine an upper cutoff �M of the expo-
nent of the q.d. distribution, above which complete localiza-
tion will prevail about the diffuse one. By equating Hf���
and Hc���, with � evaluated from the percolation regime
expression in Eq. �15�, we show in Appendix C that this
upper cutoff satisfies the implicit equation

s��M� − 2�L/�

�M
=

ln�L/��
2

. �23�

From the expression of s, the equation above has a single
solution at �M =1. If ��1, the system will transit towards
complete localization at a characteristic current level

jt = 1/1 + �s��� − 2�L/��/2�1/�. �24�

Eventually, if L /�
e4�54, the above would lead to
�M 
�m, and no diffuse localization is obtained for any
value of �. There is instead a transition directly from the
percolation regime below �
�d to a regime leading to com-
plete localization for ���d, with

s��d� −
2�L

�
=

�

�
ln� 1

am
	��perco

� − 1� = 2. �25�

where �perco is estimated by Eq. �15�. For ���d, the system
starts a complete localization at a current level given by Eq.
�24�.

To summarize the above results, a phase diagram of the
system, showing the regime through which it will go to final
breakdown, is shown in Fig. 4. The value of �d was deter-
mined numerically from Eq. �25�. A visual representation of
sequences of burning fuses, for small systems, in five points
of this phase diagram, illustrating the three regimes, is given
in Fig. 1.

The above can be compared, in the limit of infinitely large
systems, to the numerical analysis carried by Hansen et al.
�3�: using the notations of this paper, �=�0, and 1/��=0,
and the system goes from a disorderless regime A when �
��M =1 to a scaling regime B with diffuse damage and lo-
calization when �
�M. The difference between the critical
exponent separating the two regimes, which is �M =1 in the
present case, and �0=2 in the models of �3�, is believed to
come from the elongated character of the systems considered
here �Ly 	L�.
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Some remarks can be done on the succession of approxi-
mations carried to establish this phase diagram: Most of
these approximations correspond to keeping the leading or-
der in the inverse of the number of lattice cells in the lateral
dimension, � /L, for systems of infinite anisotropic ratio
�such as L /Ly→0�. These approximations already take into
account finite size effects, since they keep finite � /L. They
should thus be valid as long as these numbers are ��L, and
L�Ly. Evaluating the following terms corresponding to
higher orders of the parameters � /L and L /Ly, in order to
estimate the quality of the asymptotic expansions reduced to
leading order, is beyond the scope of the present work. In
this analytical development, there is however an approxima-
tion that does not fall in this category of asymptotic expan-
sion: in order to evaluate whether the system departs from
the percolationlike regime, as more and more fuses are
burned and the system has stayed so far in this regime, we
have considered separately the current perturbation triggered
by each burned fuse. This is perfectly justified in the early
stages of the process, where since the process is in a perco-
lationlike regime, successively burned fuses are at distances
of order Ly from each other, and almost do not interact. How-
ever, as the density of burned fuses increases, it can become
finite �for sizes and q.d. where the process always remains in
a percolation like regime, the density reaches eventually a
large fraction, in principle, the percolation threshold�. In this
situation of a high fraction of burned fuses, the approxima-
tion corresponding to evaluate the local current as a homo-
geneous background je, superimposed to the perturbation
emanating from a single burned fuse �the last burned one�,
becomes of lower quality, due to the existence of multiple
close burned fuses anywhere in the system. Overcoming this
limitation at high fractions of burned fuses, would require to
take into account a large number of perturbation sources.
This task seems more suitable for a purely numerical ap-
proach: a main scope of this paper is to carry out the ana-
lytical development in terms of extreme statistics for a mean-
field theory going beyond the purely homogeneous
description of damage �i.e., incorporating a homogeneous
term plus a local perturbation�. Carrying out analytically the
details of the calculation while keeping the track of every
local perturbation is beyond the scope of this work. The re-

sult of this approximation is mainly to underestimate the
number of close perturbation sources anywhere in the system
as the process goes on: thus, this overestimates the weight of
the probability to break far from the existing sources, Hf, and
underestimates the probability to enter a diffuse localization
or a total localization regime. Thus, the mean-field theory
presented here should predict properly the transition between
“total” and “diffuse” localization regime, but should overes-
timate the domain of the “percolationlike” regime: in Fig. 4,
the left line should be located at smaller sizes. This approxi-
mation seems to overestimate the transition size L /� by a
finite factor not exceeding an order of magnitude, as will be
shown in the next section.

Eventually, we note that in the diffuse localization regime,
the process looks uncorrelated at the lattice constant scale,
i.e., looks like a percolation system, but the arguments de-
veloped in this paper show that damage starts to concentrate
in a band of width scaling as the width of the system L. An
argument based on percolation in a gradient corresponding to
the structure of the damage concentration at the scale of the
system can then be applied to describe the breakdown pro-
cess, which sustains the arguments developed in �14� to ex-
plain the origin of the roughness of the ultimate breakdown
connected fronts in this regime.

Qualitatively, the phase diagram shown above supports
the idea that the failure of natural macroscopic heteroge-
neous systems is dominated by either the “total localization,”
or the “diffuse localization” regime. Indeed, macroscopic
materials are often systems much larger than the typical scale
of the disorder, i.e., systems with a high ratio of system size
over cell size, L /ell. In such regime, the present work pre-
dicts that the percolation regime vanishes. More precisely, in
this limit, the percolation regime would only subsist in the
limit of nonnormalizable threshold distribution, correspond-
ing to �→0. So the present work predicts that the break-
down of such system is “totally localizing” at low disorder,
or “diffusely localizating” at a larger one. This picture is
consistent with the fracture properties of natural objects:
when the fracturing solid is more homogeneous, or has only
moderately disordered toughness properties, corresponding
to large values of �, the rupture is initiated on the weakest
flaws, and the fracture propagates from nearest neighbor to
nearest neighbor: this is the classical picture of linear elastic
fracture mechanics of a homogeneous solid, described here
as “total localization.” The fracture of such a regular object,
as, e.g., a crystal, leaves a flat, or close to flat, fracture sur-
face, as seen in Fig. 1�e�. Conversely, when the toughness
properties of the breaking solid are more scattered, i.e., at
smaller �, when the heterogeneous solid is more disordered,
the rupture proceeds according to the “diffuse localization”
regime �illustrated in Fig. 1�b��: this corresponds to the
rough post mortem fracture surfaces observed in most natu-
ral materials, found to be self-affine with a universal rough-
ness of 0.8.

V. COMPARISON TO NUMERICAL SIMULATIONS

We now turn to confront this theory to numerical simula-
tions of the fuse model. We consider rectangular models of

FIG. 4. Phase diagram of the system displaying the regime
through which it will go to macroscopic breakdown, as a function
of the system’s width and exponent characterizing the fuse thresh-
old distribution.
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L�Ly cells, with high aspect ratios Ly /L in order to be close
to the infinitely long cylinder considered so far. The lattice
constant � is now considered as unit length, the models con-
sidered are periodic along the transverse x direction, and the
rows of nodes at both lattice boundaries are set to two con-
stant potential values, with a voltage drop �U between both
regularly increased from 0. The rows of fuses are inclined at
45° with respect to the x and y directions. Current conserva-
tion �Kirchhoff equation� is required at each node, and the
current through each fuse at location r connecting neighbor-
ing nodes with a local potential drop �V between them, is
�V if the fuse is intact, or 0 if the fuse is burned. This allows
for each configuration of burned and intact fuses, to obtain
by solving a linear system the voltage at each node, and the
corresponding current map as j�r�=C�r��U, where C�r� de-
pends on the configuration of burned and intact fuses. The
linear inversion is performed via a conjugate gradient algo-
rithm �Hestenes-Stiefel, Eqs. �32�–�38� in Ref. �30��. Ini-
tially, the system is entirely intact and random thresholds of
maximum sustainable current jt�r� are picked from the
quenched disorder distribution, independently for each fuse.
At any stage of the process, the location r of the next fuse to
burn and the corresponding value of the external current �U
is obtained as �U=mins�jt�s� /C�s��= jt�r� /C�r�.

An example of configurations and the history of burning
fuses is displayed in Fig. 1, for systems of size L�Ly =30
�100, and values of � between 0.25 and 2.5. The character-
istic features of the three regimes are examplified in these
cases.

For various values of L ,Ly and of the exponent � charac-
terizing the quenched disorder, we look at the distance d
between two successive events, as function of its occurrence
number in the succession of events up to total failure of the
system �when a connected line separated the upper and lower
boundaries of the system�. This distance is averaged over 50
realizations.

The characteristic situation corresponding to ��1 is il-
lustrated for the case of �=1.5 in Fig. 5: the distance be-
tween successive events is from a very early stage of order of
a few unities, irrespectively, of the sizes L �4, 10, 20� and Ly
�200 and 2000� considered. This regime was referred above
as total localization.

On the contrary, for low exponents � corresponding to
larger disorder, the typical situation is illustrated in Fig. 6 by
the case of �=0.25: Simulations have been performed using
lattice elongations Ly =200 and Ly =2000, and widths L=4,
10 and 20. The distance between successive events has been
averaged over 50 simulations. Even so, this quantity is still
highly fluctuating, and an additional running average over
200 successive events is performed in order to extract the
proper slow varying average of this distance. These high
fluctuations are easily explainable: this regime is expected to
be in the universality class of percolation, where the distri-
bution of this distance at any stage is non-negligible for all
possible distances in the lattice. Assuming consequently that
the root of the variance of this distribution is of the same
order as its average, the central limit theorem ensures that the
root of the variance of the averaged distance over 50 realiza-
tions is still of the order 1

7 of its average, which still corre-
sponds to a high noise to signal ratio. The resulting average
distance is plotted in Fig. 6, scaled by the lattice elongation
Ly in the main figure, or directly in lattice constant units in
the insert. This distance is found out to vary slightly during
the process, and shows 50% variations between the different
probed widths L, but the main result is that the average d is
of order 0.1Ly, i.e. scales with Ly: this is consistent with the
prediction of the previous sections, that systems of infinite
elongation Ly are isomorphic to percolation, i.e., that the dis-
tribution of burnt-out fuses is homogeneous, irrespectively of
the configuration of the already burned fuses—which would
predict for a very elongated system Ly→�, an average dis-
tance between successive events d�
0

Ly
0
Lydy1dy2�y1

−y2� /Ly
2=Ly /3. The fact that we observe d�Ly /10 rather

than Ly /3 can be understood as a finite size effect: less cells
far away from the last fuse burning are likely to present the
minimum ratio t / j, which increases the likelihood of having
a next burned fuse in the zone of significant current pertur-
bation, closer to the last burned fuse.

We have also analyzed the behavior of the system for �
=0.5, where according to Eq. �21�, in the limit of Ly→� one

FIG. 5. Total localization: distance between successive burning
events, as a function of their index, averaged over 50 realizations.
For a quenched disorder exponent �=1.5, this distance remains of
order unity, irrespectively of the dimensions L and Ly of the lattice.

FIG. 6. Fuse threshold distribution corresponding to exponent
�=0.25: percolation universality class. Distance between succes-
sive burning fuses, divided by the lattice elongation Ly, averaged
over 50 realizations and 200 successive events. Irrespectively of the
lattice dimensions, this distance is comparable to Ly �of order Ly /10
here�. Note that this corresponds depending on the lattice dimen-
sions, to an average distance d equal to 20–200 lattice units, as the
inset shows, and equal to 1–10 times L.
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expects a percolationlike behavior for L
e4/0.5�2980, or a
diffuse localization behavior for larger system width. The
average distance for L=4, 10, 20 and Ly =200 and 2000 is
displayed in Fig. 7—the inset represents the same data on a
smaller scale. A qualitative interpretation of these results can
be presented as follows: focusing first on the least elongated
systems �Ly =200�, the average distance is for L=10 and 20
of a few units, but the thinest systems, L=4, display a more
complicated behavior: after an initial decrease, the distance
displays episodes where its magnitude is around a few uni-
ties, alternated with episodes of order Ly. This can be inter-
preted as a case on the verge between localizing or nonlocal-
izing, i.e., as a case sitting around the line separating
percolation from the localizing regime in Fig. 4. The value
L=4 is considerably smaller than the predicted L�2980 for
infinitely elongated system. This presumably results from the
underestimate in the analytical calculations, of the localizing
and/or nonlocalizing separation due to the high fraction of
burned fuse close to the breakdown process, and from strong
finite-size effects at finite Ly, as explained in the previous
Section.

The presence of important finite size effects is confirmed
by the fact that for more elongated systems, Ly =2000, such
episodes where the average distance significantly exceeds the
width of the system occur even more for the case L=4, and
appear also for the case L=10, while they are absent from
the case L=20: presumably, the boundary between localizing
and percolating systems is around L=10 in that case. This
means at finite elongations Ly, this boundary for any � cor-
responds to significantly smaller L than value predicted for
infinitely elongated systems. This finite size effect is ob-
served to diminish for increasing elongations, as expected:
the larger is the elongation Ly, the larger is the transition
width L. Due to numerical costs, it seems, however, difficult
to evaluate numerically, in the limit Ly→� where this finite
size effects would vanish, the exact transition value for the
x-size separating non localizing systems and systems with
diffuse localization, for example for such q.d. at �=0.5.
From the above, at finite Ly, this transition size at �=0.5 is
bounded between L=10 �numerical observation for Ly
=2000� and L�2980 �theoretical upper bound from the

mean field approach, Eq. �21��. For practical numerical pur-
poses at moderate system sizes, we note that such systems
get into localizing regimes for x-system sizes L /� at one to
two orders of magnitude than the previously derived upper
bound, Eq. �21�.

Eventually, in the localizing regimes, we need to distin-
guish between what was referred to as diffuse or total local-
ization in Sec. IV: total localization was defined as a case
where the most probable break after departing from percola-
tion, would happen in the zone referred to as �1�, i.e. corre-
sponding to a distance r /� from the last burned fuse smaller
than �L /�. Diffuse localization corresponds to cases where
the next event would happen preferentially in zone �2�, at
moderate current perturbations, which corresponds to dis-
tances r /� from the last burned fuse ranging from �L /� up to
a few L /�. A criterion to distinguish numerically between
these two regimes is thus to look, for a fixed large elongation
Ly, whether the dependence of the average distance between
successive events over the system width is such as d /�L�
vanishes at large L, or on the contrary remains finite or di-
verges. In Fig. 8, the average distance between successive
events was evaluated over 50 simulations and over the sec-
ond half of the events before complete breakdown, which is
in the localization regime for all cases probed. This average
distance seems lowly sensitive to Ly =200 or 2000 �20% dif-
ference or less between both sizes�, but the scaling as func-
tion of L shows that this distance saturates rapidly for �
=0.75, while it grows approximately as �L for �=1.5. The
extent over which this power law corresponds to slightly
more than a decade for L, which is the maximum achievable
numerically since the elongation Ly has to exceed signifi-
cantly L to be in the considered framework. This result is
thus consistent with a transition from diffuse to total local-
ization between �=0.75 and �=1.5—the theory for Ly→�
predicts this transition at �=1. To pinpoint more accurately
the precise value of the transition exponent �between 0.75
and 1.5 is not easy numerically�: this would require a priori
to look at the scaling of d�L� over more orders of magni-

FIG. 7. �=0.5: features of localization, or of percolation, de-
pending on L and Ly: Localization �short distance between succes-
sive events� is seen for larger L and smaller Ly, whereas episodes
with distances significantly larger than L are observed for short L
and large Ly. Data averaged over 50 simulations.

FIG. 8. Distinction between total and diffuse localization: at
elongations Ly =200 or 2000, average distance d between succes-
sive events, for the second half of events, as function of the lateral
size L of the system, on a bilogarithmic scale. Over the numerically
accessible range as L grows, d is seen to saturate for �=1.5, corre-
sponding to total localization. For �=0.75, d /L1/2 does not vanish,
corresponding to diffuse localization.
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tudes, for numerous � inbetween, which would represent a
significant numerical cost and was not the main objective of
this work, performed mainly as a numerical check of the
analytical derivations carried out in the previous sections.

VI. CONCLUSION

The main results of the analytical calculation presented in
this paper are to be found in Fig. 4: There are three distinct
phases of the fracture process depending on the disorder ex-
ponent � and on the ratio between the width of the lattice L
and the lattice constant � when the lattice is a cylinder of
infinite length. The first regime is a percolationlike regime
where the distance between successive failing fuses is com-
pletely random. In the second regime, named diffuse local-
ization, the controlling parameter is L /�, while in the third
regime, complete localization, the controlling length is �.

To summarize the numerical results of Sec. V, regimes
corresponding to percolation, diffuse and total localization
have been clearly identified. The transition from diffuse to
total localization is consistent with the predicted �=1. The
transition from percolation universality class to localizing
regimes is seen to happen under increase of either the expo-
nent � of the quenched disorder power-law distribution, or
the width of the system, as predicted by the theory. Nonethe-
less, the transition width for a given exponent was found
significantly smaller for the systems of finite elongation stud-
ied than for the infinite elongation system considered analyti-
cally. This discrepancy was observed to be lower when the
elongation Ly increased, and presumably corresponds to im-
portant finite size effects. The transition from diffuse to total
localization is consistent with the predicted �=1, irrespec-
tively of the system’s elongation.

Hence, in the diffuse localization phase, we expect a
smooth variation of the damage profile scales L, while there
is still no strong localization driving the burned fuse to
merge at the lattice constant scale: the region where argu-
ments based on the percolation in gradient should apply. In
this case, the shape of the dipolar current perturbation �Fig.
2�, leads to most probable relative positions �x ,y� of the next
burned fuse relative to the last one, for which x and y are of
the same order of magnitude, which is at the origin of the
smooth quadratic maximum of the damage profile as func-
tion of y, as observed in �14�: This confirms the scaling ar-
guments used to relate to roughness exponents and correla-
tion length divergence exponents in such systems.

APPENDIX A: STATISTICAL LEMMAS

Consider p different types of random variables y, charac-
terized by their cumulative distributions Pi�y� and probabil-
ity density functions pi�y�=dPi�y� /dy= Pi��y�, for i
=1, . . . , p. Next, consider an ensemble of n1 random vari-
ables distributed according to p1, n2 according to p2 , . . . ,np
according to np. In the limit where N=�i=1

p ni	1, we wish to
characterize

m = �mini=1,. . .,p,j=1,. . .,ni�
yi,j� . �A1�

The probability that some particular variable number j of
type i, yi,j, would be equal to x, while all others are larger, is

pi�x��1 − Pi�x��ni−1�
j�i

�1 − Pj�x��nj . �A2�

The probability that any of the variables of type i would be
the smallest and equal to x, is the above times a factor ni.
Thus, the wanted quantity may be written as

m =� x dx�
i=1

p

�nipi�x��1 − Pi�x��ni−1�
j�i

�1 − Pj�x��nj�
=� x dx

d

dx��
j=1

p

�1 − Pj�x��nj�
=� dx��

j=1

p

�1 − Pj�x��nj� . �A3�

Setting p=1 in Eq. �A3�, we have that

m =� dx�1 − P1�x��N. �A4�

Since the function 1− P1�x� decreases continuously from 1 to
0, for large n the product �1− P1�x��N is equal to 1 for x

xc, up to a certain cutoff xc, above which it becomes van-
ishingly small. The integral Eq. �A4� is then simply equal to
xc. We determine xc by invoking the standard saddle point
approximation, which leads to the equation

p1��xc�
p1�xc�

= �N − 1�
p1�xc�

1 − P1�xc�
�A5�

for xc. By using l’Hôpital’s rule, p1� / p1� p1 / P1, this equation
reduces to the condition NP�xc�=1. Using m=xc, we have
�25�

NP1�m� = 1. �A6�

Generalizing this result to p�1, we find by invoking the
saddle point approximation for Eq. �A3�, the equation

�
i=1

p � nipi�m�
1 − Pi�m�	�

= ��
j=1

p
njpj�m�

1 − Pj�m�	2

. �A7�

If we now set 1− Pj�m��1 as Pj�m��1, and use l’Hôpital’s
rule,

�
i=1

p

nipi��m�

�
j=1

p

njpj�m�

�
�
i=1

p

nipi�m�

�
j=1

p

njPj�m�

, �A8�

Eq. �A7� reduces to

�
j=1

p

njPj�m� = 1, �A9�

which generalizes Eq. �A6�.
In the case of an infinite number of random variables

indexed by a continuous parameter s, the equivalent of Eq.
�A9� is
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�
s

n�s�P�m,s�ds = 1. �A10�

The probability Qi that the minimum variable would be of
type i �for a discrete set of random variables�, is from the
above

Qi =� dx�nipi�x��1 − Pi�x��ni−1�
j�i

�1 − Pj�x��nj� .

�A11�

The same argument shows that �1− Pi�x��ni−1� j�i�1
− Pj�x��nj is equivalent to 1 when x
m, or 0 when x�m.
Thus,

Qi = �
x=−�

m

dx nipi�x� = niPi�m� . �A12�

For a continuous set of random variables, the probability that
the minimum variable would correspond to an index s
� �s1 ,s2� is then

Q�s1,s2� = �
s1

s2

n�s�P�m,s�ds . �A13�

APPENDIX B: DENSITY OF CELLS PER LEVEL OF
SUSTAINED CURRENT

To compute n�s�, we will use an explicit expression va�u�
of the contours of isoperturbation, shown in Fig. 2 defined
implicitly as

f„u,va�u�… = a . �B1�

Inverting this expression from Eqs. �10� and �B1�, comes the
following: if a
0, there are two points of abcissa u satisfy-
ing this. Their ordinates are

va
±�u� = a cosh�2a − 1

2a
cos�u� ±�cos2�u�

4a2 +
sin2�u�

a
� .

�B2�

These functions are defined for

u mod�2�� � �− ua
max,ua

max� ,

with ua
max=a cos�4a / �4a−1��. If 0
a
0.5, there is a single

defined function va�u� satisfying Eq. �B1� for any u, which is
the positive alternative of the above Eq. �B2�. Last, if a
�0.5, the expression of va�u� is identical, but once again this
function has a finite support u mod�2��� �−ua

max ,ua
max�, with

ua
max=a cos�1−1/a�. Some examples of these auxiliary quan-

tities were set in Fig. 2.
To compute n�s�, we reformulate the condition

j� �je�1+s� , je�1+s+�s�� as f�u ,v�� �a ,a+�a� where a
=2L2s / ��2�2� and �a=2L2�s / ��2�2� from Eq. �9�, which
through a Taylor expansion of f�u ,v� in v around va�u� de-
fines

��s,�s� = �u,v�/v � �va�u� − wa�u��a,va�u��� , �B3�

wa�u� = − 1/
�f

�v
�u,va�u�� , �B4�

and thus n�s�= 1
�s�2 
�x,y����s,�s�dx dy can be expressed as

n�s� =
2L4

�2�4g�2L2s/�2�2� , �B5�

where

g�a� = �
u=0

min�ua
max,��

wa�u�du . �B6�

This number density g�a� was numerically evaluated from
the above and displayed in Fig. 3. We will also derive below
the asymptotic behavior of this function around the special
values a�0, infinitely away from the burnt fuse, a→ +�,
around for the near neighbors of the broken fuse, and a
�0.5, around the saddle point �u=�, v=0�. As will be
shown straightforwardly, these asymptots, displayed in Fig.
3, are

g�a��a→0�/2�a� , �B7�

g��a + 1/2���a→0 − 2 ln���a�� , �B8�

g�a��a→±�1/2a2. �B9�

Indeed, from Eq. �10�,

wa�u� = − 1/
�f

�v
�u,va�u��

=
�cosh„va�u�… − cos„u…�3

sinh„va�u�…�cos2�u� + cos�u�cosh„va�u�… − 2�
,

�B10�

where va�u� is given by Eq. �B2�.
Developing the above around a�0+ to main order in a is

a direct exercise which leads to wa�u��−1/a when u
� �� /2 ,��, and �wa�u���1/a for u� �0,� /2�. The integra-
tion of wa�u� in Eq. �B6� leads then to the asymptotic value
in Eq. �B7�.

Conversely, around a� +�, f�u ,v��2�u2−v2� / �u2+v2�2

=2 cos�2�� /r2, where u /r=cos� and v /r=sin�. Then,
defining,

I�a� = �
u�0,v�0,f�u,v�
a

du dv ,

we have

g�a� = − dI�a�/da , �B11�

and in polar coordinates

I�a� = �
�=0

�/4 �
r=0

�2 cos�2��/a
r dr d� = 1/2a , �B12�

leading to the asymptotic form g�a��1/2a2, Eq. �B9�.
Eventually, around �a=a− 1

2 �0, we reformulate the con-
dition f�u ,v�� �1/2−�a ,1 /2� by a Taylor expansion of f to
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second order in v: �f = f�u ,v�−1/2= f�u ,v�− f�u ,v0.5�u��
��vf�u ,v0.5�u���v+�vvf�u ,v0.5�u���v2 /2. The first term
dominates if �a
 �2��vf�2 /�vvf � and then 0
�f 
�a is
equivalent to 0
�v
−�a /�vf . When �a�2��vf�2 /�vvf , we
will have ��f �
�a if 0
�v
��a /�vvf . From Eqs. �B2� and
�B10�, v0.5�u�=�2−cos2�u�, and �vf�u ,v0.5�u�� has a single
zero in u=� �saddle point�, �vf ���−u� /4, whereas
�vvf�u ,v0.5�u�� remains finite, tending towards a finite value
� when u→�. Thus, we have

�
u,v/f�u,v���0.5−�a,0.5�

du dv , �B13�

��a�
0

�−��a/8� − 4du

� − u
+ O��a� ,

�− 2�a ln��a� + O��a� . �B14�

Differentiating this expression with respect to �a shows that
g�0.5−�a��−2 ln��a�, for �a→0+. Similar arguments lead
to the same asymptotic form for a negative �a, i.e., to the
asymptotic form in Eq. �B8�.

APPENDIX C: SPATIAL DIVISION OF THE INTEGRAL
CHARACTERIZING EXTREME STATISTICS

Here, we present the details of the subterms intervening in
the implicit Eq. �5�, which determine both the region of the
most probable next break with respect to the previous one,
and the most probable jump in external current to reach this
next break.

We have to solve the implicit Eq. �5�, with a derived
distribution

P�m,s� =
m��1 + s�� − je

�

1 − je
� He„m�1 + s� − je… . �C1�

coming from the assumed quenched disorder distribution,
P�t�= t� on 0 t1, with ��0, transformed into a condi-
tional probability of breaking for fuses having so far sur-
vived, using Eq. �4�.

In the integrand of Eq. �5�, n�s� is expressed as function
of g�a� through Eq. �11�, and we approximate this last func-
tion by its asymptotic forms Eqs. �B7�–�B9� around the sin-
gularities and in the tail of highest perturbations. We divide
the support of the integral in seven zones.

�1� In the neighboring cells carrying maximum current,
such as r /�
c where c is a finite large number. The nearest
neighbors on the sides of the last broken cell carry the maxi-
mum current, �j / je= f�2�� /L ,0��2�2 /2L2= 1

4 , correspond-
ing to an upper cutoff aM =L2 /2�2�2. Close to the origin, the
current perturbation falls as 1 /r2, and this close zone is then
defined by the condition aM /c2
 f�u ,v�
aM.

�2� The cells carrying a current such as 3
4 
 f�u ,v�


c2 /2�2. On the x axis, from Eq. �10�, these conditions
correspond to 2L /c
x
a cos�− 1

3
�L /2��L /3. We require

that these two defined first zones have a common boundary,
which by equating the cutoffs of f sets c2=L /�.

�3� A zone around the saddle point, defined as 1
4


 f�u ,v�

3
4 .

�4� A zone such as am
 f�u ,v�
1/4. This zone includes
the far-range from the last broken fuse, on which the current
is slightly increased by its presence. The lower cutoff am is
determined by the y extent of the system �length of the
band�, which was so far omitted. When the finite aspect of Ly
is taken into account, the current perturbation derived from
boundary conditions at infinity, Eqs. �9� and �10� is still valid
in boundary conditions corresponding to setting the global
current through the top and bottom plate, i.e.,

�
x=−L/2

L/2

ŷj�x, ± Ly/2�dx/L = jo.

Indeed, we find for Ly 	L, that

f�u,�Ly/L� � − cos�u�/cosh��Ly/L�

� − cos�u�exp�− �Ly/L� ,

whose integral is zero for u� �−� ,��. However, when
counting the number of cells sustaining a given current, the
condition �y�
Ly /2 should be added to derive n�s�. From the
above, n�s� is unmodified when a�am=exp�−�Ly /L�, or
when a
−am, but in the neighborhood of zero for −am
a

am, n�s� has to be modified according to

g�a� =
1

a
�a cos�− a/am� − �/2� . �C2�

This function is pair, and increasing for a�0 from g�0�
=1/am to g�am�=� /2am.

�5� A tiny zone of vanishing current perturbation, −am

 f�u ,v�
am, for which n�s� has just been determined.

�6� A far-range zone where the current is screened by the
last burnt fuse, −1
 f�u ,v�
−am.

�7� A zone of a highly screened current, −aM 
 f�u ,v�

−1.

The zones corresponding to regions defined as �c, �d,
and � f in Sec. IV, are, respectively, regions �1�–�7�. They
correspond to regions, which are with respect to the last
break, either close to it, at distances comparable with the
lattice step, or diffusively close, at distances comparable to
the width of the system Ly, or “far,” at distances comparable
with the system size Ly 	Lx. Dividing here in seven subre-
gions, will allow us to use asymptotic forms of the seven
corresponding subintegrals.

We will classify the regime of the system according to the
zone where most of the integral in Eq. �5� is realized: We
expect this zone to be either �4�–�6�, in which case the sys-
tem remains in a diffuse regime where there are no notice-
able spatial correlations in the pattern of burnt fuse, or �1�,
which signifys the onset of a complete localization regime
where the damage will develop in a concentrated zone scal-
ing as the lattice size �, and tear through the system starting
from this smallest scale, or �2� and �3�, which would denote
the onset of a diffuse localization regime, where the charac-
teristic distance d between the burnt fuse scales as L, the
system’s width.
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Noting �=�2�2 /2L2 and �=m / je, where je ,m are the val-
ues of the external current at last break and for the next one,
Eq. �5� is then equivalent to

�
i=1

7

hi��� =
2��1 − je

��
je
� , �C3�

where with

p�a,�� = He���1 + �a� − 1� , �C4�

the h functions are defined from the above zones, asymptotic
behaviors of n�s� and the q.d. distribution as

h1��� = �
aM/c2

aM �1 + �a���� − 1

2a2 p�a,��da , �C5�

h3��� = �
−1/4

1/4

2 ln� 1

��a�	�1 + ��0.5 + �a����� − 1�

� p�0.5 + �a,��d� a , �C6�

h4��� = �
am

1/4 ���1 + �a���� − 1�
2�a�

p�a,��da , �C7�

h5��� = �
−am

am 1

a
�a cos�− a/am� − �/2�p�a,��da , �C8�

and h2 has the same integrand as h1, but a support, respec-
tively, on �3/4 ,c2 /2�2�, h6 has the same integrand as h4 and
bounds �−1,−am�, h7 has the same integrand as h1 and has a
support �−aM ,−1�.

We first note that the term on the right-hand side of Eq.
�C3� is in the first stages of the process of a large number,
since the first fuse burns at an average value of the external
current j1 such as j1

�=1/Ncells=�2 /LLy, so that 2��1− j1
�� / j1

�

��2Ly /L	1. It becomes a number of order � when j0
�� 1

2 .
We first look for solutions corresponding to an increase in

the external current, i.e., we look at the behavior of the h
functions for ��1. The Heaviside terms can, therefore, be
neglected for h1 , . . . ,h5. Expanding the integrands to first
order in �, and keeping the leading orders in c=�L /�, we
obtain

h1��� = ��s����� − 2��c2 − 1�� , �C9�

where

s��� = �
1/4�c2

1/4� �1 + ���

2�2 d� , �C10�

h2��� =
2

3
��� − 1� +

��

2
ln� c2

2�
	��, �C11�

h3��� � �ln�4� + 1���� − 1� +
��

2
��, �C12�

h4��� �
�

2
ln�1/am���� − 1� +

���

8
��, �C13�

h6��� � ��

2
ln�1/am���� − 1� +

��

2
�1 −

1

�
	���

� He���1 + �am� − 1� . �C14�

The other h functions can be shown to be negligible in front
of these, and are not displayed here. In the early stages of the
process, the first terms of h4 and h6 will dominate, i.e., the
singularity of n around s�0 corresponding to the furthest
zone of the last break will be preponderant, and the threshold
to the next break will be set by

� ln� 1

amin
	��� − 1� = 2�

1 − je
�

je
� , �C15�

i.e., �� − 1 =
1 − je

�

Ncellsje
� , �C16�

which corresponds to Eq. �15�.
This leads to a second break happening on average when

j2=�1j1= �1+1�1/�j1= �2/Ncells�1/�. As long as the process re-
mains in a diffuse regime where burned fuse are far away
from each other, at distances comparable with the y extent of
the system Ly, we can go on with this mean-field theory, and
use the same arguments to evaluate the probability of finding
the next �n+1− th� burned fuses with respect to the previ-
ously burned ones. In this situation, the fuses of interest are
far from the already burned ones �h4 and h6 dominate the
integral�, and thus have thresholds above je, the external cur-
rent reached so far. We can then use the same arguments,
replacing the average current at first break j1 by the average
external current level at the nth break jn, to obtain by reccur-
rence that jn= �n /Ncells�1/�, which corresponds to Eq. �17�.
Indeed, by definition, jn+1=�njn, and from Eq. �C16�,

�n
� − 1 = 1/�Ncellsjn

�� = 1/n . �C17�

Thus, �n= ��n+1� /n�1/� and jn+1= ��n+1� /Ncells�1/�, estab-
lishing the result by recurrence. Note that this result is a
simple consistency check of the present theory: In this per-
colation regime, the concentration of the current around the
broken fuses is negligible, and the level jn+1 of �n+1� - th
break should be given by the average minimum of the
thresholds of the entire system, under the condition that all of
them have survived up to the current jn. This formulates as
P�jn+1 � jn+1� jn�= �jn+1

� − jn
�� / �1− jn

��=1/Ncells, which is ex-
actly Eq. �C16�.

A careful analysis of the above functions shows that in the
limit y, these first terms of h4 and h6 always dominates: they
are larger by a factor ln�1/am�=Ly /L than the other terms
proportional to ���−1�, and all of the corrections propor-
tional to � vanish. Thus, in this limit, Hf dominates Eq. �14�,
and no localization happens. This lasts during the whole pro-
cess �as long as the interactions between already burned
fuses are weak enough for this mean-field theory to apply�,
and in this limit of large disorder �→0, the process remains
diffuse, in a percolationlike regime, up to the moment where
je
�= 1

2 , i.e., when P�je�= 1
2 , which corresponds to the critical

percolation threshold.
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On the contrary, for �→ +�, s��� is diverging faster than
all prefactors of �� in the above, and h1��� defined in Eq.
�C9�, i.e., dominates the left-hand side in Eq. �C3�, i.e.,
Hc��� dominates in Eq. �14�, thus leading to a level of the
next break set by h1���=2��1− je

�� / je
�, i.e., Eq. �18�. In this

case, the next fuses to burn will be the ones carrying the
highest current perturbation, i.e., the near neighbors on the
sides of the first one �moreover, s��� is dominated by the
contribution between 1/4� and 1/4� /22, i.e., in this limit
�→�, the nearest neighbors will burn with certainty�.

In the range of finite �, the system can be driven to a third
regime if h2 or h3 dominate in Eq. �C3�: correlations in the
damage start to be significant, but the characteristic distance
to the preceding burnt fuses is in a range between �L� and L,
and does not scale as the lattice constant �: this is the regime
which we refer to as diffuse localization.

We have shown above that in the early stages of the pro-
cess, for a finite disorder, i.e., at finite �, the system starts in
a percolationlike regime, i.e., that Hc �h2 and h3� dominate in
Eq. �C3�. This can be the case up to the percolation transi-
tion, when P�je�= 1

2 , for large enough disorder, i.e., small �.
But as the weakest bonds are broken, the process can transit
to one of the two other regimes: either the ”total localization
regime,” where rupture proceeds via jumps between succes-
sive burned fuses, whose size d is close to the lattice spacing,
d���L��. Either the diffuse localization regime, character-
ized by a distance d between successive bonds scaling typi-
cally such as ��L���d�Ly when L→� and Ly→�. This
transition towards the diffuse localization regime should hap-
pen when Hd stops being small compared to Hc, while Hf
remains negligible compared to these. Technically, this tran-
sition can be determined by equating Hc���=Hd���, which
corresponds to leading order to h2���=h4���+h6��� �it can

be shown that the contribution of the saddle point h3��� is
always negligible in front of h2��� as long as c2=L /�	1�.
From Eqs. �C11�, �C13�, and �C14� corresponds to leading
order in 1/Ncells to the condition

�

2
ln�L

�
	 = 2

1 − je
�

je
� , �C18�

which corresponds to Eq. �20�. As detailed in Sec. IV, if this
condition is not met at the percolation transition when je

�

= 1
2 , the system stays in the percolationlike regime, whereas

if this condition is met before and Hc is still negligible, the
system transits towards the diffuse localization regime before
breakdown: from Eq. �C18�, this transition never happens if
�
�m= 4

ln�L/�� , which corresponds to Eq. �12�.
To characterize the boundary between transition to total

localization, and diffuse localization, i.e., to obtain Eq. �23�,
we have considered whether indeed Hc��� is still small com-
pared to Hd���, with � approximated by its value at the per-
colation threshold, i.e., fixed by Eq. �15� with je

�= 1
2 . Express-

ing in this way the condition h1���=h2���, with the detailed
expressions in Eqs. �C9�–�C11�, together with the definitions
am=exp�−�Ly /L�, �=�2�2 /2L2 and c2=L /�, leads to Eq.
�23�.

The estimate of the current value, Eq. �24�, where the
system transits towards total localization when ��1, is ob-
tained by equating h1���=h4���+h6���, and by noting that
the last term of h4��� dominates the right-hand side.

Eventually, Eq. �25�, which determines the boundary be-
tween the percolationlike regime and the total localization
regime in the �−L /� space, is obtained by equating h1���
=h4���+h6���, with � evaluated from its value at percolation
threshold, i.e., fixed by Eq. �15�, with je

�= 1
2 .
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